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Constructive Feedforward ART Clustering
Networks—Part I
Andrea Baraldi and Ethem Alpaydın

Abstract—Part I of this paper proposes a definition of the
adaptive resonance theory (ART) class of constructive unsuper-
vised on-line learning clustering networks. Class ART generalizes
several well-known clustering models, e.g., ART 1, improved ART
1, adaptive Hamming net (AHN), and Fuzzy ART, which are opti-
mized in terms of memory storage and/or computation time. Next,
the symmetric Fuzzy ART (S-Fuzzy ART) network is presented
as a possible improvement over Fuzzy ART. As a generalization of
S-Fuzzy ART, the simplified adaptive resonance theory (SART)
group of ART algorithms is defined. Gaussian ART (GART),
which is found in the literature, is presented as one more instance
of class SART. In Part II of this work, a novel SART network,
called fully self-organizing SART (FOSART), is proposed and
compared with Fuzzy ART, S-Fuzzy ART, GART and other
well-known clustering algorithms. Results of our comparison may
easily extend to the ARTMAP supervised learning framework.

Index Terms—Absolute and relative membership function,
adaptive resonance theory (ART), clustering, hard-and-soft com-
petitive learning, pruning, reinforcement learning, unsupervised
learning, Voronoi partition.

I. INTRODUCTION

A LL NATURAL systems provided with cognitive capabil-
ities feature feedback interaction with their external en-

vironment. Owing to this environmental feedback, natural sys-
tems weaken or reinforce their behaviors as a function of their
success [1], [2]. Mimicking the real world, an artificial cognitive
system employing reinforcement learning “is allowed to react to
each training case; it is then told whether its reaction was good
or bad” [3], “but no actual desired values are given” [4].

One example of artificial reinforcement learning can be found
in the adaptive resonance theory (ART) class of clustering algo-
rithms, e.g., ART 1 [5], Improved ART 1 (IART 1) [6], adap-
tive Hamming net (AHN) [7] and Fuzzy ART [8], whose ori-
gins go back to several 1976 pioneering papers in neural net-
work history by Grossberg [9], [10]. In ART clustering net-
works, an orienting subsystem models some external evaluation
of the pattern-matching reaction of the attentional subsystem to
an input stimulus [11], [12]. Thea priori knowledge exploited
by the ART orienting subsystem consists of a user-defined vigi-
lance threshold which is a relative number equivalent to a lower
limit on the acceptable quality of the pattern recognition ac-
tivity performed by the attentional subsystem. For example, in
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ART 1-based systems,1 the vigilance threshold is equivalent to
an upper limit on the size of the cluster region of support in input
space.

In recent years, several ART 1-based models have been pre-
sented. It is well known that ART 1, which categorizes binary
patterns, is sensitive to the order of presentation of the random
sequence [5], [6]. This finding led to the development of IART
1, which also applies to binary patterns but is less dependent
than ART 1 on the data set input presentation [6]. The AHN,
which is a binary feedforward network that may employ a par-
allel implementation of its output stage (MAXNET), is func-
tionally equivalent to ART 1 and optimizes ART 1 both in terms
of computation time and memory storage [7]. ART 2, designed
to detect regularities in analog random sequences, employs a
computationally expensive architecture which presents difficul-
ties in parameter selection [11]. To overcome these difficulties,
the Fuzzy ART system was presented as a generalization of
ART 1 to process binary as well as analog pattern distributions
[8]. To deal with supervised learning tasks, the so-called Fuzzy
ARTMAP classifier was developed around the combination of
two Fuzzy ART modules. Fuzzy ARTMAP, which was shown
to perform well in several benchmarks with respect to other su-
pervised learning systems [12]–[14], is still widely employed
in several application fields [12], [15], [16]. To reduce the sen-
sitivity of Fuzzy ARTMAP to the order of training samples,
output combinations of independently trained Fuzzy ARTMAP
systems were proposed [12], [13].

Our conjecture is that the sensitivity of Fuzzy ARTMAP
may be, at least in part, a legacy of Fuzzy ART. In other words,
since Fuzzy ARTMAP employs two Fuzzy ART modules, we
expect that ART 1 structural problems, if any, may affect Fuzzy
ART and, as a consequence, Fuzzy ARTMAP. This conjecture
is supported by the analysis of the potential weaknesses of
Fuzzy ART conducted by Williamson [13], whose consid-
erations led to the development of the supervised learning
Gaussian ARTMAP (GAM), based on the unsupervised
learning Gaussian ART (GART) module. In [13], [14], GAM
was shown to be more accurate and less sensitive to the order
of training samples than Fuzzy ARTMAP.

According to Backer and Jain, “in cluster analysis a group of
objects is split up into a number of more or less homogeneous
subgroups on the basis of an often subjectively chosen measure
of similarity, such that the similarity between objects within a
subgroup is larger than the similarity between objects belonging
to different subgroups” [18]. And since the goal of clustering is
to group the data at hand rather than provide an accurate char-

1For the sake of simplicity, we will further refer to ART 1, IART 1, AHN, and
Fuzzy ART as ART 1-based algorithms.
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acterization of unobserved (future) samples generated from the
same probability distribution, the task of clustering may fall out-
side the framework of predictive (inductive) learning problems,
such as vector quantization [19].

The subjective nature of the clustering problem precludes an
absolute judgement as to the relative efficacy of all clustering
techniques [18]. In line with this principle, the goal of this paper
is not to choose the “best” clustering technique (such a task
would be contrary to the very nature of clustering), but rather to
emphasize those functional aspects most important to the user
such as robustness to changes in input parameters, sensitivity to
the order of the data set input presentation, accuracy, computa-
tion time, domain of applicability, etc., that may characterize the
algorithms belonging to the class of ART clustering networks.
Although focused on ART clustering networks, such as ART 1
and Fuzzy ART, our analysis may provide new insights into the
understanding of the Fuzzy ARTMAP classifier.

Part I of this paper provides a definition of the class of ART
clustering networks which is capable of generalizing the group
of ART 1-based algorithms (see footnote 1). Based on this def-
inition, ART 1, IART 1, and Fuzzy ART are optimized in terms
of computation time and memory storage, while structural prob-
lems of ART 1-based algorithms are highlighted. Next, the sym-
metric Fuzzy ART (S-Fuzzy ART) network is proposed and dis-
cussed as a possible improvement over Fuzzy ART. As a gener-
alization of S-Fuzzy ART, the group of simplified ART (SART)
algorithms is defined. The GART clustering model, which is a
Gaussian maximum-likelihood (ML) probability density func-
tion estimator found in the literature [13], is presented as one
more instance of class SART.

In Part II of this paper, a constructive, on-line learning,
topology-preserving, soft-to-hard competitive, minimum-dis-
tance-to-means clustering network, belonging to class SART
and termed fully self-organizing SART (FOSART), is proposed
as a new synthesis between properties of Fuzzy ART and other
successful clustering algorithms such as the self-organizing
map (SOM) [20], [21], and neural gas (NG) [22], to extend the
capabilities of these separate approaches.

Part I of this paper is organized as follows: in Section II, the
class of ART clustering networks is defined. In Section III, ART
1-based algorithms are interpreted in the light of the general
ART framework proposed in Section II. Fuzzy ART is discussed
in Section IV and S-Fuzzy ART is presented in Section V. Sec-
tion VI presents an experimental comparison between Fuzzy
ART and S-Fuzzy ART. In Section VII, generalization of the
S-Fuzzy ART model leads to the definition of the class of SART
clustering networks. Conclusions are reported in Section VIII.

II. THE CLASS OFART CLUSTERING NETWORKS

Based on our interpretation and generalization of the AHN re-
formulation of the ART 1 clustering algorithm [7], this section
proposes our definition of the class of ART clustering networks
that generalizes and optimizes, in terms of memory storage,
well-known clustering algorithms such as: 1) binary ART 1 [5];
2) binary IART 1 [6]; 3) binary and feedforward AHN, shown
in Fig. 1, which is functionally equivalent to ART 1 [7]; and 4)

Fig. 1. AHN system. For details on the meaning of threshold� and weights
W and ^W, refer to bibliography [7].

analog and feedforward Fuzzy ART [8]. In combination with
the definition of class ART we also propose two versions of an
efficient ART (EART) implementation scheme capable of opti-
mizing ART networks in terms of computation time.

Class ART of clustering networks and class EART (version
1 and 2) of ART implementation schemes will be employed as
general frameworks in this paper.

A. ART Optimization Problem

Let us consider, at presentation time, an unlabeled input
vector , where is the dimensionality of input space,
while domain in the analog case, or in
the binary case. This input vector is processed by an unsuper-
vised single-layer feedforward constructive clustering network,
consisting of a layer of input units , , fully
connected to an output layer of processing elements (PEs, also
termed output nodes, categories, components, or clusters),

, where network size may increase with
time. Structural properties of the output node at time are
parameterized by a parameter (weight) vector learned from the
data (also called cluster prototype or template) ,

, where is the dimensionality of param-
eter space.

In line with the AHN reformulation of the ART 1 clustering
algorithm [7], we define an ART clustering scheme as an
optimization problem where the best-matching unit at time,

, is the solution, if any, that maximizes expression [7]

(1)
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where , called activation function (AF), is
a mapping

(2)

equivalent to a “compatibility” (i.e., typicality, membership)
measure between data point and cluster model , subject
to constraint

(3)

where vigilance threshold, which is a user-defined relative
number,provides a model of top-down external expectations,
while , called match function (MF), is
a mapping

(4)

equivalent to a normal “compatibility” measure between data
point and cluster model . The purpose of inequality (3) is to
detect whether pattern is an outlier, i.e., whether input data
is very far from the ensemble of clusters at time. In general,
activation and match functions (2) and (4) may or may not be
the same function.

In our view, the modular architecture of all ART clustering
algorithms consists of (see Fig. 2):

i) a completely generic unsupervised single-layer feedfor-
ward (bottom-up) pattern recognition network, termedat-
tentional subsystem,consisting of processing elements
(PEs) which perform according to (1). This definition is
not obvious if we consider that the “bidirectional” func-
tional interpretation of ART 1, employing top-down as
well as bottom-up adaptive weights [5], [6], still holds in
recent papers [15], [16]. Exploitation of “unidirectional”
rather than “bidirectional” adaptive weights guarantees an
optimization, in terms of memory storage, of traditional
“bidirectional” algorithms like ART 1 and IART 1 (see
Appendix I) [17].

ii) An orienting subsystem,centered on inequality (3),
equivalent to an interface between supervised and unsu-
pervised knowledge, where the quality of unsupervised
bottom-up pattern recognition is compared to top-down
requirements (expectations, or prior knowledge) pro-
vided by the external environment (supervisor) in the
form of an adimensional relative vigilance threshold

.
In the orienting subsystem, according to an example-driven
mechanism [23], if (3) is satisfied, i.e., if unsupervised knowl-
edge matches external expectations, then “resonance” occurs.
In this case the unsupervised pattern recognition activity of the
attentional module is reinforced (see Section I) by means of
suitable prototype adaptation strategies.

Vice versa, if resonance does not occur, an outlier is detected
and the orienting subsystem allows the attentional module to dy-
namically increase its resources (processing elements) to meet
external requirements. In particular, when (3) is not satisfied at
time , then, at time , parameter adaptation is restricted
to a specific parameter subspace consisting of one single cate-
gory specifically generated to satisfy (3). This network growing

Fig. 2. ART and SART system architecture, whereW identifies a matrix
of bottom-up connections andW is the best-matching template. Unlike the
common interpretation of ART 1-based systems, notice that no top-down
connection is involved. For more details, refer to the text.

strategy: 1) aims at avoiding the “probabilistic (relative) mem-
bership problem” where, at time , template parameters
existing at time are affected by an outlier detected at time
[24], [25],2 and 2) should be combined with a noise category
removal mechanism, which is straightforward to add to ART
architectures [13], [27].

Supervision by the orienting subsystem over attentional ac-
tivities is such that coarser partitions of input space are pur-
sued when vigilance parameteris lowered in (3). This means
that the vigilance threshold is employed as a lower bound on
a normal degree of “compatibility” (membership) between an
input vector and a category structure pair.

Note that, in our ART attentional subsystem, provided with
feedforward connections exclusively, the meaning of the term
“resonance” is in contrast with that traditionally employed in
the ART literature [5], [6], [8], [15], [16]. This term should
no longer indicate “the basic feature of all ART systems, no-
tably, pattern-matching between bottom-up input and top-down
learned prototype vectors” [8, p. 760], just as the term “res-
onance” has never been applied to pattern matching activities
performed by feedforward clustering networks, e.g., SOM or
NG, where no top-down prototype vector does exist. In our view
of ART systems, the term “resonance” means rather that if, in
the orienting subsystem, unsupervised knowledge matches ex-
ternal (prior) expectations, then, in the attentional subsystem,
successful pattern recognition activities are reinforced by means
of prototype vector adaptation mechanisms.

B. Optimized Implementation of ART Clustering Networks

It is interesting to observe that the only structural difference
between AHN and ART 1, IART 1 and Fuzzy ART is that AHN
executes (3) first and (1) second, while the latter algorithms
execute the same pair of operations in reverse order. This
architectural difference allows AHN to detect, at time, the

2In fuzzy set theory, an outlier tends to have small “possibilistic” (absolute)
membership values with respect to all category structures, while its “proba-
bilistic” (relative) membership values may be high [24]–[26].
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TABLE I
PROPERTIES OFART CLUSTERING NETWORKS

best-matching unit, , if any, by searching once through
the activation values whatever the input pattern may
be, whereas the traditional implementation of ART 1, IART
1, and Fuzzy ART requires one up to searches through
activation values, managed by a so-called “mismatch reset
condition and repeated search process” mechanism [5]–[8],
[15], [16]. To summarize, binary AHN and ART 1 clustering
models are functionally equivalent, but AHN, which employs
feedforward connections exclusively, is more efficient in terms
of computation time and memory storage [7].

Let us call the AHN-based optimal implementation of the
ART maximization problem, defined by (1) and (2), the compu-
tationally efficient ART (EART) implementation scheme. Un-
like traditional implementations of ART 1, IART 1, and Fuzzy
ART, and in line with AHN, EART employs no time-consuming
“mismatch reset condition and repeated search process.” De-
pending on properties of activation and match functions, we pro-
pose two versions of the EART implementation scheme. Table I
shows the relationship between versions 1 and 2 of the EART
processing scheme with ART networks discussed in this paper.

1) Version 1 of the EART Implementation Scheme:EART
version 1 is equivalent to the sequential version of the parallel
AHN processing scheme. It holds when match function (3) does
not increase monotonically with activation function (2), i.e., if

, , does not imply

that , , ,

, , , and vice versa. Since this condition
holds in ART 1, IART 1, and Fuzzy ART, besides AHN, then
all ART 1-based networks may be implemented with version 1
of the EART implementation scheme, see Table I.

Step 0. Initialization: Presentation counterand PE counter
are set to zero.

Step 1. Input Pattern Presentation:Presentation counter is
increased by one as , and a new pattern is presented
to input nodes.

Step 2. Detection of Processing Units Eligible for Reso-
nance—Vigilance Testing (3):The orienting subsystem selects
as candidates for resonance those processing units that match
external requirements. To select these units, the orienting
subsystem employs vigilance test (3). All PEs (generally, more
than one) that satisfy this constraint constitute an ensemble
passed to Step 3. If this ensemble is empty, goto Step 4b).

Step 3. Resonance Domain Detection—Activation Value
Computation and Best-Matching Unit Selection (1):In line
with (1), the largest activation among PEs that have passed
disequality (3) in Step 2 is selected.

Step 4a). Resonance Condition—Reinforcement
Learning: Prototype of the best-matching unit, ,

is adjusted to input pattern according to an ART
model-dependent weight adaptation law. Other prototypes may
also be considered suitable for adaptation if soft-competitive
learning strategies are adopted.

Step 4b). Nonresonance Condition—New Processing Ele-
ment Allocation: If there is no solution to the maximization
problem described above, i.e., if the ensemble detected in
Step 2 is an empty set, then “resonance” does not occur and
one new processing unit is dynamically allocated to match
external expectations. Thus, the PE counter is increased as

and a new output node is allocated

to match input pattern , e.g., when , i.e., if dimen-
sionalities of parameter and data spaces are the same, then

. As a consequence, ART algorithms require
no randomization of initial templates since initial values are
data-driven.

Step 5: Goto step 1.
2) Version 2 of the EART Implementation Scheme:If acti-

vation function (2) increases monotonically with match func-
tion (3), i.e., if , ,
implies that , , ,

, , , and vice versa, then EART
version 2 holds. This EART version employs the above condi-
tion to reduce computation steps required to cluster input pat-
terns, i.e., EART version 2 is more efficient than version 1. ART
1, IART 1, AHN and Fuzzy ART do not satisfy the condition
above and cannot employ EART version 2, see Table I. One ob-
vious example in which the condition above is satisfied is when

, , .
Step 0. Initialization: As in EART version 1.
Step 1. Input Pattern Presentation:As in EART version 1.
Step 2. Detection of Processing Units Eligible for Reso-

nance—Activation Value Computation and Best-Matching Unit
Selection (1): The largest activation is selected according to
(1). The corresponding PE is the best-matching unit, which is
the only processing unit passed to vigilance testing.

Step 3. Resonance Domain Detection—Vigilance Testing
(3): Vigilance test (3) is applied to the best-matching unit
exclusively. If the test is not satisfied, goto Step 4b).

Step 4a). Resonance Condition—Reinforcement
Learning: As in EART version 1.

Step 4b). Non-Resonance Condition—New Processing Ele-
ment Allocation: As in EART version 1.

Step 5: Goto step 1.
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Fig. 3. Class ART, SART and ART 1-based group of networks.

III. T HE ART 1-BASED GROUP OFART CLUSTERING

NETWORKS

In this section, ART 1, IART 1, AHN, and Fuzzy ART are
interpreted in the light of the general ART framework proposed
in Section II. In other words, this section presents a special ver-
sion of the ART clustering framework capable of modeling ART
1-based networks exclusively (see Fig. 3). This ART 1-based
clustering framework optimizes ART 1-based networks in terms
of memory storage (e.g., ART 1, IART 1) and/or computation
time (e.g., ART 1, IART 1, Fuzzy ART) with respect to their
traditional implementations [5], [6], [8], [15], [16].

In line with Section II, let us consider, at presentation time
, an input vector , where domain in the

analog case (Fuzzy ART), or in the binary case
(ART 1, IART 1, AHN). Cluster structures are parameterized as

, , where . In other words, in
ART 1-based systems, parameter and data spaces have the same
dimensionality, i.e., cluster parameter vectors are points in data
space.

Definition 1: Let us define as unidirectional interpattern de-
gree of match (UIDM) any (normal and not symmetric) map-
ping

(5)

where domain in the analog case, or in
the binary case such that: 1) if , then
takes on its maximum (equal to 1), but the contrary does not hold
and 2) , , , i.e., the
function is not symmetric with respect to vectorsand .3

According to Section II and definition 1 above, we state that
an ART 1-based clustering network is equivalent to an ART op-
timization problem, defined by (1)–(4), constrained as follows
(see Fig. 3):

• activation function (2), - ,

and match function (4), - ,
both belong to class UIDM. In particular, activation
function - , employed in (1),

measures the degree to which matches , but
it does not assess the reverse situation, i.e., the degree to
which matches . Vice versa, match function

- , employed in (3), measures

3Term “unidirectional,” i.e., not symmetric with respect to vectorsX andW,
is introduced in line with term “bidirectional” adopted in [7, p. 609].

the degree to which matches , but it does
not assess the degree to which matches (see
Appendix I).

• When (3) is satisfied (i.e., resonance occurs), the param-
eter adaptation strategy is purely competitive (crisp, hard),
i.e., only the best-matching prototype, detected by (1), is
adapted.

• The network is implemented efficiently by version 1 of the
EART implementation scheme (see Section II-B1).

IV. FUZZY ART

Let us further specialize the ART 1-based clustering frame-
work proposed in Section III to examine Fuzzy ART as the
best-known representative of the ART 1-based network group
(as a matter of fact, rather than as a standalone system, Fuzzy
ART is known as the basic module of the Fuzzy ARTMAP clas-
sifier). For the sake of completeness, relationships between ART
1, IART 1, and Fuzzy ART equations are also highlighted.

A. Fuzzy ART Preprocessing

Fuzzy ART requires a preprocessing stage where input pat-
tern normalization is used to prevent category proliferation. A
possible normalization technique is [8]

(6)

where is the original input pattern and

(7)

is the Euclidean length (modulus) or norm 2, such that
. Otherwise, in normalization by complement coding [8],

(8)

where such that , ,
, and , where the (non-Euclidean) norm

1 operator is defined as [8]

(9)

Normalization (6), by losing vector-length information, causes
an unacceptable alteration of the informative content of non-
normal data sets, which are typical in real-world applications.
Unlike normalization (6), (8), by adding additional, comple-
ment-coded terms to the input vector, causes no loss or gain
of information, although it doubles the number of connections
(storage requirement) and network computation time [5], [12].
In other words, complement coding is just a way of format-
ting the input data so that the Fuzzy ART activation and match
functions work correctly. Essentially, complement coding al-
lows Fuzzy ART to store and evaluate the minimum and max-
imum values of inputs assigned to each cluster in each dimen-
sion, i.e., complement coding allows a geometric interpretation
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of Fuzzy ART recognition categories as hyperbox-shaped re-
gions of input space [8]. In this case, each hyperbox starts as
an isolated point, then it can increase its size with time, up to a
maximum size, which is determined by the vigilance threshold.
This also implies that templates cannot “cycle,” i.e., Fuzzy ART
does have a type of stability. Without complement coding, Fuzzy
ART would only store the minimum values, thus entailing a loss
of half of its information. As a consequence, when Fuzzy ART
or Fuzzy ARTMAP are employed in practical applications, nor-
malization by complement coding (8) is adopted exclusively.

B. Fuzzy ART Equations

In the light of the EART version 1 implementation scheme
described in Section II-B1, Fuzzy ART equations are presented.
Whenever necessary, relationships with ART 1 and IART 1 are
pointed out. In the general analog case, belongs to .

Activation Function (2): In Fuzzy ART, it is defined as

(10)

where parameter (e.g., , [12]), is included
to break ties, i.e., to bias the function in favor of the longer of two
template vectors. If , (10) belongs to class (see
Section III). In this case, (10) provides the degree to which input
vector matches cluster prototype , but it does not as-

sess the reverse situation. In fact

, i.e., (10) is not symmetric with re-

spect to vectors and . Note that parameters in (3)
and in (10) are interrelated as illustrated in [28]. For example,
if , then Fuzzy ART completes its learning in
one list presentation when complement coding is employed for
preprocessing.4

Match Function (4): In Fuzzy ART, (4) belongs to class
(see Section III) and is defined as

4In binary ART 1 and IART 1, (2) applies to binary vector pairs and belongs
to classUIDM when� = 0. According to (A1.6) in Appendix I, (2) is defined
as

AF X ;W

=

W �X

�+ W

2 [0; 1]; X ; W 2 f0; 1g

� > 0; j = 1; . . . ; c(t): (11)

Equation (10) generalizes (11) by substituting operators product and norm 1
[see (9)] with operations that resemble those employed in fuzzy set theory (e.g.,
intersection and cardinality [29]). As Simpson observed [30, p. 37]: “for these
operations to be correctly interpreted as fuzzy operations, they would have to be
applied to membership values, not to the parameters of the activation function.”
This means that the “degree of fuzzification” of Fuzzy ART with respect to ART
1 is questionable.

(12)

In line with Section III, note that (12) computes the degree
to which cluster prototype matches input vector

, but it does not assess the reverse situation. In fact
,

, i.e., (12) is not symmetric with respect to vectors
and .

In binary ART 1 and IART 1, match function (4) belongs to
class (see Section III) and applies to binary vector pairs.
It is defined as [see also Appendix I, (A1.1)] [6]

(13)

Note that (12) generalizes (13) by substituting the product
and norm 1 operators with fuzzy-like operators (intersection
and cardinality respectively [29]). Equation (13) has a ge-
ometrical meaning: it computes a normal measure of how
many unit-valued (informative) components of binary vector

are matched by those of binary template , i.e., it

measures the degree to which matches . Since for
a binary vector the Euclidean norm (vector length) is such that

, where , then
(13) can be written as

(14)

where operator is the dot (scalar) product and is the

angle between and . The geometrical interpreta-

tion of (14) is the projection of along the direction of

normalized by the length of . Besides (14), IART 1
employs another match function defined as [6]

(15)
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In line with (13), (15) provides a normal measure of how many
unit-valued components of are matched by those

of , i.e., it measures the degree to which matches
. In line with (14), the geometrical interpretation of

(15) is the projection of along the direction of

normalized by the length of .
The only difference between binary ART 1 and IART 1 net-

works is that the latter model sequentially applies vigilance test
(3) twice, where the match function is implemented as either
(13) or (15). In other words, IART 1 applies a pair of “unidirec-
tional” vigilance tests, which is equivalent to stating that IART
1 adopts one “bidirectional” vigilance test (in line with terms
adopted in [7]). It was proved that this functional difference is
sufficient to make IART 1 more robust than ART 1 to changes
in the order of presentation of the input sequence [6].

Resonance Condition:The hard-competitive weight adapta-
tion law to be employed in Step 4a) of the EART version 1 im-
plementation scheme (see Section II-B1) is

(16)

with learning rate . In the fast-learning case,is equal
to one. Equation (16) stresses the fact that only the winner tem-
plate is allowed to be attracted by input pattern ,
which makes the Fuzzy ART model hard-competitive. When
normalization by complement coding (8) is adopted, (16) with

is such that each category is represented by perhaps the
simplest statistics about its data: the minimum and maximum
values in each dimension, this representation being best suited to
data that are uniformly distributed within hyperrectangles [13].

C. Potential Weaknesses of Fuzzy ART

In line with the existing ART literature (e.g., see [13] and
[30]), potential weaknesses and possible developments of Fuzzy
ART are analyzed in this section. In [13], an analogous discus-
sion led to the development of unsupervised learning GART as
the basic module of the supervised learning Gaussian ARTMAP
(GAM) network, which was shown to be more efficient and less
sensitive to the order of training samples than Fuzzy ARTMAP
[13], [14].

1) Sensitivity to Noise and Outliers:Fuzzy ART may be af-
fected by overfitting, i.e., Fuzzy ART may fit the noise and not
just the data [13]. The problem of category proliferation in noisy
data is partly due to the fact that activation and match functions,
i.e., (10) and (12) respectively, are flat within a category’s hy-
perrectangle [13]. Thus, activation and match functions can be
substituted with functions that, for example, monotonically in-
crease toward the center of a category’s region of support [13].

In ART 1-based systems, an additional cause of category pro-
liferation is that template generation is example-driven [23], i.e.,
a single poorly mapped pattern (outlier) suffices to initiate the
creation of a new unit. This outlier detection capability can be
combined with a noise category removal mechanism, which is
straightforward to add to ART 1-based architectures if neces-
sary. Relying upon noa priori knowledge about the data, re-
moval of noise categories may be based on enough accumulated

evidence, i.e., it may employ a mini-batch learning framework
to collect “robust” statistics averaged over the noise on subsets
of the input sequence [4]. When these statistics show that one
cluster is chosen infrequently, e.g., when the sum of the degrees
of membership of data points with respect to a category struc-
ture (cardinality of a cluster) is below a user-defined threshold
[31], then that cluster is considered a dead unit and is pruned. In
the literature, pruning techniques have been applied to and rec-
ommended for ART constructive networks [13], [27], as well as
other scalable unsupervised learning algorithms (e.g., refer to
[31], [32]).

2) Inefficiency of Category Structures:If the dimension-
ality of the data space increases, a fixed quantity of data rapidly
becomes sparse, providing a very poor representation of the
input-output mapping to be estimated: this is the so-called
“curse of dimensionality” [4]. In a high-dimensional space, e.g.,
when dimensionality is 10, most of the volume of a cube is
concentrated in the large number of corners in which evidence
tends to be sparse and predictions become unreliable [4], [19].
This implies that when the hypothesis that data are uniformly
distributed within hyperboxes does not hold, Fuzzy ART may
predict (infer) the existence of data in corners of rectangular
regions of support where no evidence exists [13]. To reduce
this problem, a natural choice is to model cluster structures as
spheres, e.g., radial Gaussian functions, which is consistent
with recommendations proposed in Section IV-C1. This has led
to the development of GART, which employs spherical clusters
[13]. Also in the case of spherical clusters, however, cluster
parameter estimation may still rely upon sparse data. In fact,
in a high dimensional space, most of the probability mass of a
sphere is concentrated in a thin shell close to the surface while
at the sphere’s center, which must be estimated from the data,
probability density is high, but there is only a small fraction of
the data [4].

3) Dependence of Category Structures Upon Data Set Input
Presentation: The goal of on-line learning methods is to avoid
storage of a complete data set by discarding each data point
once it has been used [4]. On-line learning methods are required
when: 1) it is necessary to respond in real time and 2) the input
data set is so huge that batch methods become impractical be-
cause of their numerical properties (e.g., in linear model re-
gression, exact batch solutions may be affected by numerical
problems with large data sets [4], [33]), or computation time, or
memory requirement. On-line learning typically results in sys-
tems that become order-dependent during training, in line with
complex biological systems [1].

It is well known that the number and position of clusters de-
tected by ART 1-based clustering algorithms are very sensitive
to the order of presentation of the input sequence [6], [30]. In [6],
it was proved that binary IART 1 improves its robustness over
ART 1 by sequentially applying match functions (13) and (15)
within vigilance test (3). As IART 1 improves the ART 1 clus-
tering accuracy and robustness to changes in the order of data
set input presentation by replacing the “unidirectional” (asym-
metrical) match function with a “bidirectional” (symmetrical)
match function, we may expect that Fuzzy ART, too, may ben-
efit from the replacement of (12) with a “bidirectional” match
function. Extending this concept, we may expect further im-
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provements to come by replacing the Fuzzy ART “unidirec-
tional” activation function, (10), with a “bidirectional” activa-
tion function.

This simple extrapolation is supported by the following rea-
soning. ART 1-based clustering networks employ an inherently
nonsymmetrical architecture (based on asymmetrical activation
and match functions) to compute an intrinsically symmetrical
degree of match between an input pattern, which belongs to
input space, and a template vector, which belongs to weight
space, but is equivalent to a point in data space. In other words,
ART 1-based networks aims at computing a similarity mea-
sure, ranging in [0, 1], between two homogeneous objects in
data space. Since it is computed between two homogeneous
arguments, this compatibility (similarity) measure is intrinsi-
cally symmetrical. Despite this consideration, the ART 1-based
vector pair similarity measure is split into two steps, where a
pair of nonsymmetrical activation and match functions compute
two “unidirectional” degrees of match. This match value pair
is not treated as an information unit. Rather, the first degree of
match (activation value) is employed to select the best-matching
cluster while the second degree of match (match value) is ex-
ploited to check whether the input pattern falls within a bounded
hypervolume of acceptance around the best-matching cluster. If
the order of the match value pair is switched (i.e., if the input and
template vectors in data space are switched), system behaviors
may change. This sensitivity to the order of the match value pair
reveals that ART 1-based networks feature an accidental depen-
dence on the order of presentation of the input sequence not to
be confused with the systematic dependence of on-line learning
systems upon the order of data set input presentation.

V. S-FUZZY ART

Let us introduce a modified version of Fuzzy ART, called
symmetric Fuzzy ART (S-Fuzzy ART), whose activation
and match functions are Fuzzy ART-based, but symmetric.
According to Section IV-C3, S-Fuzzy ART should be more
accurate and more stable with respect to changes in the order
of data set input presentation than Fuzzy ART. If experimental
results confirm these theoretical expectations, a new group
of ART networks, called simplified ART (SART), may be
developed, such that: 1) it is a generalization of S-Fuzzy ART
and 2) it belongs to the general ART framework proposed in
Section II (see Fig. 3).

Definition 2: Let us define as interpattern degree of match
(IDM) any (normal and symmetric) mapping

(17)

where domain in the analog case, or in the
binary case, such that: 1) if , then takes on
its maximum, and vice versa and 2) , ,

, , . One instance of the class of func-
tions, taken from the literature and capable of processing both
analog and binary cases, is [24]

(18)

Fig. 4. Geometric interpretation of Fuzzy ART and S-Fuzzy ART activation
and match functions.

One more instance of class in both analog and binary
cases is the combination of the two equations (10) and
(12). For example, when parameterin (10) is omitted, the
product between (10) and (12) gives

(19)

In mathematical terms, the right side of (19) computes the ratio
between the norm 1 [see (9)] of point ,

, and the geometric mean5 of norm 1 of points and
, see Fig. 4.6

We call S-Fuzzy ART a Fuzzy ART adaptation where acti-
vation and match functions are the same function, equivalent to
the combination (e.g., sum or product) of (10) with (12). For ex-
ample, when parameterin (10) is omitted, we may choose

-

- (19)

such that

-

-

5Given two variablesa andb in R the geometric and arithmetic means,
defined as

p
ab and(a + b)=2 respectively, satisfy disequality

p
ab � (a +

b)=2.
6The binary version of (19), equivalent to the product between (11) and (13)

when� = 0, is provided with a simple geometric meaning. When parameter�
in (11) is omitted, the product between (11) and (13) gives

IDM (X;W) =

X �W

X � W

= cos (�) 2 [0; 1]; 8X ; W 2 f0; 1g (20)

where� is the angle between binary vectorsX andW. Equation (20) states
that two binary vectors are the same vector iff their in-between angle� is zero,
regardless of their moduli (of course, this interpretation does not apply to non-
binary vector pairs).
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i.e., both activation and match functions are symmetric with re-
spect to vectors and . Exploitation of (19) in (1) and
(3) allows S-Fuzzy ART to be implemented in line with version
2 of the EART implementation scheme (see Section II-B2 and
Table I), which is more efficient than EART version 1 applied
to Fuzzy ART (see Section III).

VI. EXPERIMENTAL COMPARISONBETWEENFUZZY ART AND

S-FUZZY ART

In Appendixes II and III, a simple numerical example pro-
vides insights into how S-Fuzzy ART aims at improving Fuzzy
ART accuracy and robustness with respect to changes in the
order of presentation of the input data. An experimental compar-
ison between Fuzzy ART and S-Fuzzy ART is provided below.
These experiments show that S-Fuzzy ART improves Fuzzy
ART in terms of accuracy and robustness. However, neither
S-Fuzzy ART nor Fuzzy ART are: 1) competitive with sev-
eral clustering algorithms found in the literature when the Iris
data set is processed and 2) consistent with human perceptual
grouping capabilities when the Simpson data set is processed.
Although encouraging, these results reveal that, to improve its
performances significantly, Fuzzy ART should be revised more
in depth, e.g., according to the entire set of recommendations
proposed in Section IV-C. To improve Fuzzy ART, first, we
define a new group of ART networks, called SART (see Sec-
tion VII), as a generalization of S-Fuzzy ART, and, second, we
develop new instances of class SART that try to satisfy all con-
straints proposed in Section IV-C (e.g., see Appendix IV and
Part II of this work).

Results of the comparison between Fuzzy ART and S-Fuzzy
ART may easily extend to the ARTMAP supervised learning
framework in general and, in particular, to the Fuzzy ARTMAP
classifier (which employs two Fuzzy ART units as processing
modules).

Iris Data Set: To provide a first assessment of Fuzzy ART
and S-Fuzzy ART accuracy and robustness, let us consider 30
presentations of the standard four-dimensional Iris data set,
consisting of 50 vectors for each of three classes [34]. In the
first step of this comparison, prototypes are computed from the
Iris data set without using vector labels. In the second step, a
many-to-one class prediction function, i.e., amultiple-prototype
classifier[35], is obtained by relating each cluster to the class
having the largest number of representatives inside the cluster
(majority vote, [4]).

In this experiment, for every input data presentation, vigi-
lance threshold is increased until the number of detected clus-
ters is equal to the desired number of clusters. Let us iden-
tify with number of s (no. s) the size of the set of discrete
values capable of detecting the desired number of clustersin
every input data presentation. Thus, for a given number of de-
sired clusters , both algorithms are run (30 no. s) times,
each run employing a different combination of an Iris input se-
quence with a vigilance threshold (in the same input sequence,
if several s detect the same number of desired clusters, then
the best performance in terms of the classification error is se-
lected).

Exploitation of the Iris data set allows comparison of Fuzzy
ART and S-Fuzzy ART accuracy with those of other clustering
models found in the literature. Typical error rates for unsu-
pervised categorization of the Iris data set are 10–16 mistakes
[34]–[36]. For example, when the number of clusters is three,
then: 1) the Fuzzy Min–Max clustering model misclassifies 18
patterns (see [30, Fig. 10]); 2) the Fuzzy-means algorithm
is affected by 15 misclassifications [37]; 3) the Kohonen VQ
algorithm is affected by 17 misclassifications [37]; 4) the class
of on-line fuzzy algorithms for learning vector quantization is
affected by 16 misclassifications [38]; and 5) the on-line GLVQ
family of algorithms is affected by 16 misclassifications [39].

Results obtained with Fuzzy ART and S-Fuzzy ART are
shown in Tables II and III, where the following symbols are
used:

• is the network size of interest, i.e., the desired number
of clusters;

• is the average number of detected clusters when input
parameter is set equal to and , respectively (see
below);

• , which is the standard deviation over detected
values, increases when system robustness with respect to
changes in the presentation sequence decreases;

• no. s is the size of the set of discretevalues capable
of detecting the desired number of clustersin every
input data presentation; the no.s value increases when
the system robustness with respect to changes in the pre-
sentation sequence decreases;

• is the average value of the user-defined input parameter
;

• , which is the standard deviation over values,
increases when the system robustness with respect to
changes in the presentation sequence decreases;

• is the minimum value;
• is the maximum value;
• is the average classification error (i.e., the average

number of misclassified patterns);
• , which is the standard deviation of error, increases

when the system robustness with respect to changes in the
presentation sequence decreases;

• is the minimum value of ;
• is the maximum value of .

When category structures are detected in the Iris data set,
S-Fuzzy ART improves accuracy and robustness of Fuzzy ART,
e.g., see , , no. s, and values in Tables II and
III. Finally, when , observe that neither S-Fuzzy ART nor
Fuzzy ART are competitive with several clustering algorithms
found in the literature (see the list of typical error rates reported
earlier in this section).

Simpson Data Set:Despite its simplicity, the unsupervised
Simpson data set [30], consisting of 24 patterns, is sufficient to
highlight some functional differences between Fuzzy ART and
S-Fuzzy ART. The Simpson data set is shown in Fig. 5, where
we provide data points with five different labels reflecting our
global impression of Fig. 5 (see perceptual grouping problems
in vision, which deal with the detection of the “right” partition
of an image into subsets [40]). At lower spatial resolution, a
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TABLE II
FUZZY ART. EPOCHS= 10. THIRTY PRESENTATIONS OF THEIRIS DATA SET

TABLE III
S-FUZZY ART. EPOCHS= 10. THIRTY PRESENTATIONS OF THEIRIS DATA SET

Fig. 5. Simpson data set, consisting of 24 patterns. We provide data points with five different labels reflecting our global impression of the image (this is a
perceptual grouping problem in vision, dealing with the detection of the “right” partition of an image into subsets).

three-cluster partition may be perceived, where label 1 is joined
with label 2, label 4 with label 5 while label 3 stays isolated.

Fuzzy ART and S-Fuzzy ART are input with six different pre-
sentations of the Simpson data set, while vigilance parameter
is adapted until the two algorithms detect either three or five
clusters in every input sequence. Corresponding confusion ma-
trices averaged over six runs are shown in Tables IV–VII.

Tables IV and V show that when the number of detected clus-
ters is three, robustness of S-Fuzzy ART is superior to that of
Fuzzy ART (see values of standard deviation per cell). Separa-
tion of labels one and two also appears to be more consistent

in S-Fuzzy ART, while neither one of the two algorithms is ca-
pable of detecting label 3 as an isolated cluster.

Tables VI and VII show that when the number of detected
clusters is five, both algorithms are insensitive to the order of
presentation of the input sequence. When the unsupervised first
stage is combined with a supervised second stage employing
a majority vote mechanism, then S-Fuzzy ART is superior to
Fuzzy ART in terms of misclassification points (zero versus two,
respectively).

In line with conclusions drawn from the Iris data clustering,
this experiment shows that S-Fuzzy ART seems superior to
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TABLE IV
FUZZY ART. � = 0:75. EPOCHS= 10. SIX PRESENTATIONS OF THESIMPSON

DATA SET. NO. OF CLUSTERS= 3. AVERAGE CONFUSIONMATRIX REPORTING

POINT ALLOCATIONS AND, IN PARENTHESES, STANDARD DEVIATION PER CELL

TABLE V
S-FUZZY ART. � = 0:685. EPOCHS= 10. SIX PRESENTATIONS OF THE

SIMPSON DATA SET. NO. OF CLUSTERS= 3. AVERAGE CONFUSION

MATRIX REPORTINGPOINT ALLOCATIONS AND, IN PARENTHESES,
STANDARD DEVIATION PER CELL

Fuzzy ART in terms of accuracy and robustness, although both
algorithms seem incapable of solving even simple clustering
problems consistently with human perceptual grouping (e.g.,
when the Simpson data set is partitioned with three clusters).

VII. T HE SART GROUP OFART CLUSTERINGNETWORKS

Owing to its Fuzzy ART-based symmetric intern-pattern
similarity measure, S-Fuzzy ART is superior to Fuzzy ART,
in terms of clustering accuracy and robustness, when the Iris
and Simpson data sets are processed (see Section VI). Our
strategy is to generalize S-Fuzzy ART to generate, within the
general ART framework proposed in Section II a new class of
algorithms, called SART, whose aim is to perform better than
the ART 1-based group of networks defined in Section III.
To avoid ART 1-based potential weaknesses discussed in
Section IV-C, class SART does not overlap the ART 1-based
group of networks, see Fig. 3. In synthesis:

1) SART networks must be capable of processing analog as
well as binary input patterns.

2) The SART optimization problem is a specialization of the
general ART framework, proposed in Section II, where
match and activation functions satisfy a set of constraints
different from those required by ART 1-based networks
in Section III.

A. Absolute and Relative Fuzzy Memberships

In the terminology adopted in fuzzy set theory [24]–[26]: 1)
the “possibilistic” (absolute) membership value of a point with
respect to a cluster (equivalent to a vague concept or fuzzy set)
does not depend on its membership values in other clusters and
2) the “probabilistic” (relative) membership value of a point
with respect to a cluster is a relative number, and it depends on
the absolute membership of the point in all clusters, thus indi-
rectly on the total number of clusters itself.

Let us recall that, in the ART as well as SART processing
frameworks, any analog input vector belongs to analog
data space , where is the dimensionality of the input space,
while any cluster structure , , belongs to
parameter space , with .

Definition 3: We define as absolute (or possibilistic) mem-
bership (AM) of pattern with respect to (the vague
concept of) cluster structure , , a mapping

(21)

equivalent to a “compatibility” (i.e., typicality, membership)
measure between data point and cluster model . In the
case of , i.e., when vectors of cluster parameters are
points in data space, 1) if , then takes on its
maximum, and vice versa and 2) ,

.
Definition 4: If the least upper bound of the range of values

of an function is unity, then we call this mapping normal
absolute (or possibilistic) membership (NAM), i.e.,

(22)

equivalent to a “compatibility” (i.e., typicality, membership)
measure between data pointand cluster model . In the case
of , i.e., when vectors of cluster parameters are points in
data space, 1) if , then takes on its max-
imum, and vice versa and 2) ,

. This implies that in the case of , a
function is equivalent to an function, see (17).

One instance of the class of functions, where ,
is the unit-height Gaussian distribution [13]

(23)

where, in this case, distance identifies the Euclidean
distance.

Definition 5: Let us define as relative (or probabilistic) mem-
bership (RM) of pattern with respect to (the vague
concept of) cluster structure , , be-

longing to codebook , any normal
mapping [24], [25]

(24)
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TABLE VI
FUZZY ART. � = 0:85. EPOCHS= 10. SIX PRESENTATIONS OF THESIMPSONDATA SET. NO. OF CLUSTERS= 5. AVERAGE CONFUSIONMATRIX REPORTINGPOINT

ALLOCATIONS AND, IN PARENTHESES, STANDARD DEVIATION PER CELL

TABLE VII
S-FUZZY ART. � = 0:8. EPOCHS= 10. SIX PRESENTATIONS OF THESIMPSON DATA SET. NO. OF CLUSTERS= 5. AVERAGE CONFUSIONMATRIX REPORTING

POINT ALLOCATIONS AND, IN PARENTHESES, STANDARD DEVIATION PER CELL

such that [24]

(25)

where function is monotonically non-
increasing with a generic distance and

monotonically nondecreasing with distances ,
. If , then

must hold, i.e., if cluster parameter vectors
are points in data space then function must be symmetric
with respect to vectors and , .

Given any or function, a possible function
is

(26)

Because of condition (26), where any relative (probabilistic)
membership depends on the absolute (possibilistic) membership
of the point in all clusters, anyth processing element (PE), with

, is context-sensitive, i.e., relative membership
computation provides a tool for modeling “network-wide in-
ternode communication by subsuming that processing elements
are coupled through feed-sideways (lateral) connections” [41].

In the literature, probabilistic (relative) and possibilistic (ab-
solute) fuzzy clustering algorithms are both affected by some
well-known drawbacks. On the one hand, in probabilistic fuzzy
clustering, noise points and outliers, featuring low possibilistic
typicalities with respect to all templates, may have significantly
high probabilistic membership values which may severely af-
fect the prototype parameter estimate [24], [25]. On the other
hand, in possibilistic fuzzy clustering, learning rates computed
from absolute typicalities tend to produce coincident clusters
[25], [42]. This poor behavior can be explained by the fact that
cluster prototypes are uncoupled in possibilistic clustering, i.e.,
possibilistic clustering algorithms try to minimize an objective
function by operating on each cluster independently. This leads
to an increase in the number of local minima.

B. SART Optimization Problem

In contrast with the ART 1-based group of networks proposed
in Section III, the SART clustering framework is defined as an
ART optimization problem, consisting of (1)–(4), constrained
as follows (see Fig. 3):

• activation function (2), , employed
in (1), is either an function, see (24) and (25), or a
function monotonically increasing with an function
[e.g., an or function, see (21) and (22), im-
plicitly related to function through (26)].

• Match function (4), , employed
in (3), belongs to the class of functions, see (22).
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• When (3) is satisfied (i.e., resonance occurs), the param-
eter adaptation strategy may be either hard- or soft-com-
petitive [in the latter case, the best-matching prototype, de-
tected by (1), may not be the only prototype to be adapted].

• The network is implemented efficiently by versions 1 or 2
of the EART implementation scheme (see Section II-B).

Based on the definitions of classes of functions
and (see Section VII-A), the above conditions imply
that: 1) in the case of , then , and

, are symmetric and 2) ,

and , may be the same
function.

C. Examples of SART Networks

One instance of the class of SART networks, where
, , with ,

is the S-Fuzzy ART system proposed in Section V. In this
case, it is obviously true that the match function increases
monotonically with the activation function and vice versa.
Thus, S-Fuzzy ART can be implemented efficiently according
to version 2 of EART, see Section II-B2 and Table I.

A second instance of class SART, where ,
, while , is a system

where

(23)

A third instance of class SART, where ,
, and , is the GART

probability density function (pdf) estimator, briefly described
by Williamson in [13] (for more details about GART, refer
to Appendix IV). Since , (A4.2)
(see Appendix IV) does not monotonically increase with

, (23), GART can be implemented
efficiently according to version 1 of EART, see Section II-B1
and Table I.

Note that the only difference between this second instance
of class SART and GART is that the former model ignores, in
its activation equation (23), prior probability terms (i.e., it con-
siders prior terms equiprobable) that are, instead, explicitly con-
sidered in activation equation (A4.2) of GART.

VIII. C ONCLUSION

Class ART is defined as a generalization of several
well-known clustering models, e.g., ART 1, Improved ART 1,
AHN, and Fuzzy ART, which are optimized in terms of memory
storage and computation time. S-Fuzzy ART, whose symmetric
activation and match functions are Fuzzy ART-based, is pro-
posed as a possible alternative to Fuzzy ART. Simple numerical
examples and experimental evidence reveal that S-Fuzzy ART
tends to be more robust, accurate and computationally efficient
than Fuzzy ART. Generalization of the S-Fuzzy ART network
leads to the definition of a specific group of networks, termed
SART, which belongs to class ART. Besides S-Fuzzy ART, one
more instance of class SART is the GART algorithm, which
is sketchily described in the literature. GART is interpreted
as an on-line constructive clustering network equivalent to a

maximum-likelihood probability density function estimator for
Gaussian mixtures. In Part II of this paper another clustering
network, called FOSART, which belongs to class SART and,
unlike GART, tries to minimize a distortion (quantization)
error, is discussed and compared with Fuzzy ART, S-Fuzzy
ART, GART, and other well-known clustering algorithms.

APPENDIX I
SIMPLIFICATION OF BIDIRECTIONAL CONNECTIONS INART 1

In binary ART 1, where bottom-up and top-down vectors,
and , , respectively, are adopted, the

following equations hold [5], [6].

• Match function (4), to be employed in Step 2 of the EART
version 1 implementation scheme (see Section II-B1):

(A1.1)

• Activation function (2), to be employed in Step 3 of
the EART version 1 implementation scheme (see Sec-
tion II-B1):

(A1.2)

• Hard-competitive top-down weight adaptation law, to be
employed in Step 4a) of the EART version 1 implementa-
tion scheme (see Section II-B1):

(A1.3)

• Hard-competitive bottom-up weight adaptation law, to be
employed in Step 4a) of the EART version 1 implementa-
tion scheme (see Section II-B1):

(A1.4)

Substituting (A1.3) into (A1.4) we obtain

(A1.5)



658 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 3, MAY 2002

Thus, substituting (A1.5) into (A1.2) we get, for every
template vector , ,

(A1.6)

Equations (A1.1) and (A1.6) show that: 1) ART 1 acti-
vation and match functions at timedepend exclusively
on unidirectional weight vectors ,
and 2) these weight vectors are bottom-up (feedforward)
[17]. To summarize, the attentional subsystem of ART 1
is single-layer and feedforward, in line with the general
ART clustering framework proposed in Section II.

APPENDIX II
NUMERICAL EXAMPLE OF FUZZY ART CLUSTERING

As ART 1 was found to be sensitive to changes in the order of
presentation of the input sequence [6], we expect Fuzzy ART,
which is ART 1-based, to be sensitive to this type of pertur-
bation as well. Fuzzy ART, see Section IV-B, is implemented
according to the EART processing scheme version 1, see Sec-
tion II-B1 and Table I.

Let us consider the following example. The input param-
eters are , , (see Section IV-B).
The presentation list is ,

, and . For sim-
plicity’s sake, we submit this input sequence to the Fuzzy
ART preprocessing normalization step (6) rather than (8)
(our conclusions will not depend on the adopted normal-
ization strategy). The presentation list becomes

, , and
.

Patterns and generate two categories
and , respectively [since

vigilance test (3), which employs match function (12), is such
that ].
The winner template for pattern is chosen according to
Steps 2) and 3) in the EART processing scheme version 1,
where vigilance test (3) and match function (12) are applied be-
fore computing activation function (10). Equation (12) is such
that

, i.e., template is not eligible for resonance.
Since

, template satisfies the vigilance test and
is the winner template. Then, fast category adaptation (12)
(where ) leads to . Thus, final
templates are while .

Let us consider a different order of the input sequence
where the input vectors described above are presented as
follows: , , and

. Due to input pattern normalization,
the presentation list becomes ,

,
and . Patterns and
generate two categories and

respectively [since vigilance test (3) employing match
function (12) is such that

]. Thus, according to (3) and
(12) in Step 2) of the EART implementation scheme version 1,

,
while ,
i.e., neither of the two templates satisfies the vigilance test.
Then, a new category is dynamically allocated so that the final
templates are , , and .

In this example the number and position of clusters detected
by Fuzzy ART is sensitive to the order of the presentation se-
quence.

APPENDIX III
NUMERICAL EXAMPLE OF S-FUZZY ART CLUSTERING

To test the S-Fuzzy ART model proposed in Section V, where

- , - ,
(19), implemented according to version 2 of the EART imple-

mentation scheme (see Section II-B2 and Table I), let us con-
sider the same example employed to test Fuzzy ART in Ap-
pendix II.

The input parameters are , (see Sec-
tion IV-B). The normalized presentation list is

, , and
.

Patterns and generate two categories
and , respec-

tively [since vigilance test (3), employing match func-
tion (19), is such that - ,

]. The winner template for pattern
is chosen according to Steps 2) and 3) in the EART

processing scheme version 2, where vigilance testing is applied
after detecting the largest value of activation function (19).
Equation (19) is such that -

- ,
, i.e., template

, which is the best-matching template, does not satisfy the
vigilance test. Thus, a new category is dynamically allocated
so that the final templates are , ,
and .

In line with Appendix II, the second presentation of
the normalized input sequence to be considered is

,
, and .

Patterns and generate two categories
and , respectively [since vigi-

lance test (3), employing match function (19), is such that

-
]. Thus, according to (1), (3) and (19) in Steps

2) and 3) of the EART processing scheme version 2,

-
-

, i.e., template , which is the best-matching



BARALDI AND ALPAYDIN: CONSTRUCTIVE FEEDFORWARD ART CLUSTERING NETWORKS—PART I 659

template, does not satisfy the vigilance test. Thus, a new
category is dynamically allocated so that the final templates are

, , and .
In this example the number and position of clusters detected

by S-Fuzzy ART is insensitive to the order of the presentation
sequence.

APPENDIX IV
GART AS AN INSTANCE OFCLASS SART

GART is an on-line constructive clustering ART network
sketchily proposed in [13]. To the best of our knowledge,
GART has never been employed as a standalone system. On the
contrary, GART was conceived as part of the GAM classifier
[13], [14]. According to its author, “the GART module plays
the same role within the ARTMAP architecture as does an ART
1 module, or a Fuzzy ART module” [13].

This Appendix shows that GART: 1) belongs to the class of
ML pdf estimators for Gaussian mixtures; 2) belongs to the
SART class of networks (see Section VII); and 3) can be ef-
ficiently implemented with version 1 of the EART implementa-
tion scheme (see Section II-B1 and Table I).

In GART, the problem of clustering is (implicitly) defined as
that of minimizing the negative log-likelihood (NLL) for data
set , where is the size of the data set,
under the hypothesis that data vectors are mutually independent
and identically distributed, i.e.,

(A4.1)

where network size increases with time, density function
is treated as a mixture (linear combination) of compo-

nents modeled as Gaussian densities, and

(A4.2)

where GART recognition categories are parameterized by
weight vectors , , where

is the mean and is the standard deviation. The GART
activation function, (A4.2), is substituted into (1) of the ART
optimization framework (see Section II-A). On identifying the

mixture components as , , let be
thea priori probability that a pattern belongs to mixture com-
ponent , and be the class conditional probability

that the pattern is , given that the pattern’s state is . In
(A4.2), let us consider

(A4.3)

where is the th category’s unit-height Gaussian dis-
tribution such that (see Section VII-A)

(23) (A4.4)

To detect outliers, the GART match function, (A4.4), is substi-
tuted into vigilance test (3) of the ART optimization framework
(see Section II-A).

In (A4.2), owing to a hard (crisp) competitive learning
strategy adopted by GART, priors are computed as

(A4.5)

where is the number of patterns assigned to theth category,
such that constraint

(A4.6)

holds true. Observe that, first,. (A4.2) and (A4.4) belong to the
class of NAM (see Section VII-A) functions. Second, (A4.2)
increases monotonically with the posterior probability, which is
a RM (see Section VII-A) defined as

(A4.7)

such that

(A4.8)

Thus, maximization of (A4.2), which minimizes cost function
(A4.1), is equivalent to maximization of (A4.7).

Overall, the properties of (A4.2), (A4.4), and (A4.7) satisfy
the constraints required by the SART optimization framework
(see Section VII-B).

To summarize, GART belongs to the SART class of clustering
algorithms. Moreover, since , does not

monotonically increase with , , and vice
versa, GART can be implemented according to version 1 of the
EART implementation scheme (see Section II-B1 and Table I).

Exploitation of match function (A4.4) allows GART not to be
subjected to the so-called “probabilistic membership problem”
in which an outlier affects all category parameters during
training [25] (on the contrary, in GART, outlier detection leads
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to generation of a noise category so that pruning mechanisms
should be adopted to avoid category proliferation).

Given (A4.1)–(A4.5), GART update equations are a sto-
chastic (on-line) and hard-competitive version of the standard
“batch” solution to maximize the likelihood of parameters for
a Gaussian mixture model of the input data (see [4, pp. 46 and
65]).

In the first case, when, at time , vigilance test (3)
employing (A4.4) fails, then a new processing unit is allocated
and the following update equations are applied:

(A4.9)

(A4.10)

(A4.11)

(A4.12)

(A4.13)

where , equivalent to the initial standard deviation of cate-
gories, should be a “large” user-defined scale parameter (e.g.,

[13]), generally larger than the finalvalue computed
when convergence is reached, such that a newly generated cate-
gory has a smalla priori probability and a large standard devia-
tion, and thus a weak but ubiquitous activation function (A4.2)
[14]. When increases, then the number of detected clusters
decreases. In terms of classification rate, an optimalexists for
each data set and a givenvalue [13]. In terms of user interac-
tion, there are two user-defined parameters,and , capable of
controlling the number of clusters detected by GART.

In the second case, having identified the best-matching cate-
gory based on (1) combined with (A4.2), if
vigilance test (3) employing match function (A4.4) is satisfied,
then [13]

(A4.14)

(A4.15)

(A4.16)

(A4.17)

(A4.18)

where .
Within the supervised learning ARTMAP architecture,

GART is adopted as part of the Gaussian ARTMAP (GAM)
classifier, which is hard-competitive in its first incarnation
[13], and soft-competitive in a later, more successful, imple-
mentation [14]. In several benchmarks, GAM has been seen to
perform better than other supervised learning systems, such as
Fuzzy ARTMAP and the EM approach to mixture modeling
[13], [14].
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